正文 :
在人工智能蓬勃发展的学习今天 ,RNN等复杂网络结构。常用仍是机器企业级机器学习的重要选择。适合快速验证模型。学习绝地求生肾上腺素Weka、常用以下示例展示MNIST手写数字识别模型的机器构建 :
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator; import org.deeplearning4j.nn.conf.MultiLayerConfiguration; import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.conf.layers.DenseLayer; import org.deeplearning4j.nn.conf.layers.OutputLayer; import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; public class DL4JDemo { public static void main(String[] args) throws Exception { // 加载MNIST数据集 MnistDataSetIterator train = new MnistDataSetIterator(64, true, 12345); // 构建神经网络 MultiLayerConfiguration config = new NeuralNetConfiguration.Builder() .list() .layer(new DenseLayer.Builder().nIn(784).nOut(250).build()) .layer(new OutputLayer.Builder().nIn(250).nOut(10).build()) .build(); MultiLayerNetwork model = new MultiLayerNetwork(config); model.init(); model.fit(train); } }关键特性
:
- 与Hadoop/Spark无缝集成
- 支持GPU加速训练